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Robustness of matching (Informal)

I Given a bipartite graph, consider the situation where some nodes arrive/leave,

I Want to preserve a certain property of matching, e.g., perfectness,
I A matching is “robust” if it can be recovered with the minimum changes after the

arrivals/departures of nodes.
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Problem

Backup Nodes Problem (BN)

Input: A bipartite graph G = (A ∪ B, E) where |A| < |B| and there exists an A-perfect
matching in G.

Output: A subset S ⊆ B which maximizes the number of elements in A that have
neighbors in S while maintaining an A-perfect matching between A and B \ S.



Motivation: project assignment

I matching between students and projects,
I possible situation: a matched project becomes unavailable after the matching

result is published,
I we would like to find a “backup” unmatched project for the corresponding student

without interfering other students.
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Figure: An instance of BN with 3 students and 5 projects.
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Figure: A feasible solution.



Example

b1

b2

b3

b4

b5

a1

a2

a3

Figure: An optimal solution.
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Main results

General Degree-constrained

Algorithm
◦ 1 − 1/e approximation,

via submodular
maximization over a
matroid constraint

◦ Polynomial-time (exact)
solvable, when G is
(d , 2)-regular, d ≥ 3.

Complexity ◦ NP-hard to approximate
within 1 − 1/e + ε

◦ NP-hard to approximate
within 293/297, when
∆(G) = 4



General BN

max |N(S)|
s.t. ∃ perfect matching between A and B \ S

∅ ⊆ S ⊆ B

I Maximizing coverage function, over dual matroid of the matching matroid,
I 1 − 1/e approximation.



Degree-constrained BN
Two easy cases

1. deg(a) ≤ 2:

take any feasible S, we have

|N(S)| =
∑
b∈S

deg(b).

hence we can apply greedy.

2. deg(a) ≥ dA, deg(b) ≤ dB : take any feasible S, we have

|N(S)| ≥
(

1 − dB
dA

)
|A|.
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(d , 2)-regular BN

Idea: compute maximum matching in an auxiliary graph.
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(a) The original graph G = (A ∪ B, E)
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(b) The auxiliary graph G ′ = (A, E ′)

Algorithm: max matching M of G ′ correspondence−−−−−−−−−→ S ⊆ B augmentation−−−−−−−−→ optimal solution.
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Open questions

Are there any other special cases of BN, which are solvable/approximable?

For example,
1. the first unsolved case: deg(b) = 3, ∀ b ∈ B,
2. other bounded degree constraints,
3. bounded VC-dimension.
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Tightness of (1 − 1/e)-approximation for BN

Gap-preserving reduction from Max k-Cover, which has no better approximation
than 1 − 1/e assuming P 6= NP [Fei98].

Step 1: Basic reduction for NP-hardness [Wei24].

Step 2: Amplifying the gap.
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NP-hardness

U : ground set of size n

S: m subsets of U



NP-hardness

U : ground set of size n

m − k dummy elements

n private subsets

S: m subsets of U



Second price auctions with binary bids

A related problem called (offline) Second-Price Matching is studied by Azar,
Birnbaum, Karlin, and Nguyen in 2009.

Second-Price Matching (2PM)

Input: A bipartite graph G = (A ∪ B, E).
Output: A matching M with the maximum size such that all matched nodes in A has

an unmatched neighbor in B.

I A: goods,
I B: bidders,
I Only 0 or 1 bids,
I Maximize the second-price auction profit.
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