ROBUSTNESS OF MATCHING: BACKUP NODES PROBLEM

Jiaye Wei (EPFL)

Joint work with Rom Pinchasi, Neta Singer, and Lukas Vogl

September 19, 2025

Table of Contents

Introduction

Results

Next steps

Robustness of matching (Informal)

▶ Given a bipartite graph, consider the situation where some nodes arrive/leave,

Robustness of matching (Informal)

- ▶ Given a bipartite graph, consider the situation where some nodes arrive/leave,
- ▶ Want to preserve a certain property of matching, e.g., perfectness,

Robustness of matching (Informal)

- ▶ Given a bipartite graph, consider the situation where some nodes arrive/leave,
- ▶ Want to preserve a certain property of matching, e.g., perfectness,
- ► A matching is "robust" if it can be recovered with the minimum changes after the arrivals/departures of nodes.

Problem

BACKUP NODES PROBLEM (BN)

Input: A bipartite graph $G = (A \cup B, E)$ where |A| < |B| and there exists an A-perfect matching in G.

Output: A subset $S \subseteq B$ which maximizes the number of elements in A that have neighbors in S while maintaining an A-perfect matching between A and $B \setminus S$.

Motivation: project assignment

- matching between students and projects,
- possible situation: a matched project becomes unavailable after the matching result is published,
- we would like to find a "backup" unmatched project for the corresponding student without interfering other students.

Example

Figure: An instance of BN with 3 students and 5 projects.

Example

Figure: A feasible solution.

Example

Figure: An optimal solution.

Table of Contents

Introduction

Results

Next steps

Main results

	General	Degree-constrained
Algorithm	$\circ \ 1-1/e$ approximation, via submodular maximization over a matroid constraint	• Polynomial-time (exact) solvable, when G is $(d,2)$ -regular, $d\geq 3$.
Complexity	\circ NP-hard to approximate within $1-1/e+arepsilon$	 NP-hard to approximate within 293/297, when $\Delta(G) = 4$

General BN

max
$$|N(S)|$$

s.t. \exists perfect matching between A and $B \setminus S$
 $\emptyset \subseteq S \subseteq B$

- Maximizing coverage function, over dual matroid of the matching matroid,
- ▶ 1 1/e approximation.

Degree-constrained BN

Two easy cases

1. $deg(a) \le 2$:

Degree-constrained BN

Two easy cases

1. $deg(a) \le 2$: take any feasible S, we have

$$|N(S)| = \sum_{b \in S} \deg(b).$$

hence we can apply greedy.

Degree-constrained BN

Two easy cases

1. $deg(a) \le 2$: take any feasible S, we have

$$|N(S)| = \sum_{b \in S} \deg(b).$$

hence we can apply greedy.

2. $deg(a) \ge d_A, deg(b) \le d_B$: take any feasible S, we have

$$|N(S)| \geq \left(1 - \frac{d_B}{d_A}\right)|A|.$$

(d, 2)-regular BN

Idea: compute maximum matching in an auxiliary graph.

(a) The original graph $G = (A \cup B, E)$

(b) The auxiliary graph G' = (A, E')

(d, 2)-regular BN

Idea: compute maximum matching in an auxiliary graph.

(a) The original graph $G = (A \cup B, E)$

(b) The auxiliary graph G' = (A, E')

Algorithm: max matching M of $G' \xrightarrow{\text{correspondence}} S \subseteq B \xrightarrow{\text{augmentation}} \text{optimal solution}$.

Table of Contents

Introduction

Results

Next steps

Open questions

Are there any other special cases of BN, which are solvable/approximable?

For example,

- 1. the first unsolved case: $deg(b) = 3, \forall b \in B$,
- 2. other bounded degree constraints,
- 3. bounded VC-dimension.

References

- ▶ [ABKN09] On revenue maximization in second-price ad auctions. In Amos Fiat and Peter Sanders, editors, Algorithms ESA 2009, pages 155–166, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
- Fei98] A threshold of $\ln n$ for approximating set cover. Journal of the ACM, 45(4):634-652, 1998.
- ▶ [PSVW25] Second price matching with complete allocation and degree constraints. Preprint, 2025.
- ▶ [Wei24] Robust recoverable matching problems. Master thesis, 2024.

Thank you for listening! 😉

Tightness of (1-1/e)-approximation for BN

Gap-preserving reduction from MAX k-Cover, which has no better approximation than 1-1/e assuming $P \neq NP$ [Fei98].

Tightness of (1-1/e)-approximation for BN

Gap-preserving reduction from MAX k-COVER, which has no better approximation than 1-1/e assuming $P \neq NP$ [Fei98].

Step 1: Basic reduction for NP-hardness [Wei24].

Step 2: Amplifying the gap.

NP-hardness

NP-hardness

Second price auctions with binary bids

A related problem called (OFFLINE) SECOND-PRICE MATCHING is studied by Azar, Birnbaum, Karlin, and Nguyen in 2009.

SECOND-PRICE MATCHING (2PM)

Input: A bipartite graph $G = (A \cup B, E)$.

Output: A matching M with the maximum size such that all matched nodes in A has an unmatched neighbor in B.

- ► A: goods,
- B: bidders,
- Only 0 or 1 bids,
- Maximize the second-price auction profit.